Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 145(1): 540, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30710975

RESUMO

This work relates to recent advances in the field of auditory event-related potentials (ERP), specifically deconvolution-based ERP acquisition and single-trial processing. An efficient stimulus sequence optimization method for ERP deconvolution is proposed, achieving consistent noise attenuation within a broad designated frequency range. Furthermore, a stimulus presentation paradigm for the fast, interleaved acquisition of auditory brainstem, middle-latency and late responses featuring alternating periods of high-rate deconvolution sequences, and subsequent low-rate stimulation is investigated in 20 normal hearing subjects. Deconvolved sequence responses containing early and middle-latency ERP components are fused with subsequent late responses using a time-frequency resolved weighted averaging method based on cross-trial regularity, yielding a uniform signal-to-noise ratio of the full-range auditory ERP across investigated timescales. Obtained average ERP waveforms exhibit morphologies consistent with both literature values and reference recordings acquired in 15 normal hearing subjects using a prior art approach to full-range auditory ERP acquisition, with all prominent waves being visible in the grand average waveforms. Results suggest the proposed interleaved stimulus presentation and associated ERP processing methodology to be suitable for the fast, reliable extraction of full-range auditory processing correlates in future ERP studies.


Assuntos
Potenciais Evocados Auditivos , Modelos Neurológicos , Adulto , Encéfalo/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tempo de Reação
2.
Audiol Res ; 8(2): 216, 2018 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-30613372

RESUMO

The importance of binaural cues in auditory stream formation and sound source segregation is widely accepted. When treating one ear with a cochlear implant (CI) the peripheral auditory system gets partially replaced and processing delays get added potentially, thus important interaural time differences get altered. However, these effects are not fully understood, leaving a lack of systematic binaural fitting strategies with respect to an optimal binaural fusion. To get new insights into such alterations, we suggest a novel method of free-field auditory brainstem evoked responses (ABRs) analysis in CI users. This method does not bypass the technically induced intrinsic delays of the sound processor while leaving the whole electrode array active, thus the most natural way of stimulation is provided. We compared the ABRs collected of 12 CI users and 12 normal hearing listeners using two different stimuli (chirp, click) at four different intensities each. We analyzed the ABRs using the average of 2000 trials as well as a single trial analysis and found consistent results in the ABRs' amplitudes and latencies, as well as in single trial relationships between both groups. This method provides a new perspective into the natural CI users' ABRs and can be useful in future research regarding binaural interaction and fusion.

3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 5877-5880, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28269591

RESUMO

The Auditory Brainstem, Middle-Latency and Late Responses, a class of event-related potentials (ERPs), are of considerable interest in neuroscience research as robust neural correlates of different processing stages along the auditory pathway. While most research to date centers around one of the responses at a time for practical reasons, recent efforts indicate a paradigm shift towards acquiring them together, enabling the simultaneous monitoring of all auditory processing stages from the brainstem to the cortex. In this paper, we introduce a compact representation for this Auditory Full-Range Response (AFRR) as an ERP map with adaptive sampling rate, making it suitable for computationally inexpencive image filtering. Furthermore, we propose a novel algorithm for the fast denoising of such ERP maps based on the Radon Transform and its inversion by filtered backprojection. Its performance is compared qualitatively to a Gaussian means filter using a real-world chirp-evoked AFRR recording. The algorithm exhibits good noise suppression as well as high preservance of the single-response structure, making it a promising denoising tool for future ERP studies.


Assuntos
Tronco Encefálico/fisiologia , Potenciais Evocados/fisiologia , Estimulação Acústica , Algoritmos , Humanos , Razão Sinal-Ruído
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 1646-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26736591

RESUMO

A classical objective measure for binaural fusion at the brainstem level is the so-called ß-wave of the binaural interaction component (BIC) in the auditory brainstem response (ABR). However, in some cases it appeared that a reliable detection of this component still remains a challenge. In this study, we investigate the wavelet phase synchronization stability (WPSS) of ABR data for the analysis of binaural fusion and compare it to the BIC. In particular, we examine the impact of monaural nonlinear frequency compression on binaural fusion. As the auditory system is tonotopically organized, an interaural frequency mismatch caused by monaural frequency compression could negatively effect binaural fusion. In this study, only few subjects showed a detectable ß-wave and in most cases only for low ITDs. However, we present a novel objective measure for binaural fusion that outperforms the current state-of-the-art technique (BIC): the WPSS analysis showed a significant difference between the phase stability of the sum of the monaurally evoked responses and the phase stability of the binaurally evoked ABR. This difference could be an indicator for binaural fusion in the brainstem. Furthermore, we observed that monaural frequency compression could indeed effect binaural fusion, as the WPSS results for this condition vary strongly from the results obtained without frequency compression.


Assuntos
Estimulação Acústica , Tronco Encefálico/fisiologia , Adulto , Eletrodos , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Feminino , Humanos , Masculino , Análise de Ondaletas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...